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AbstracL We oblain the quantization mnditions of the periodic lbda lattice in the Baxter 
form: 

A ( u ) Q ( u ) = i N Q ( u  +ih)  + i - N Q ( ~ - i r L )  

A is the 'transfer matrix' mntaining L e  informalion about the spectrum and Q is an 
inlegral operator mmmuting with A. ll~e logarithms of the mavix elements of Q are 
the generating functions of the canonical B6cklund transformation. ' h e  requiremenl that 
Q is analytic and vanishes when U goes to infinity completely determines the spectrum 
of A. 

The lbda lattice [1-4] is a onedimensional chain of equal masses with exponential 
interactions between nearest neighbours. When the chain is finite, either the first and 
last masses are decoupled (the open chain) or they are coupled together (the periodic 
chain). Both systems are completely integrable in the Sense that one can construct as 
many "ants  of the motion as they possess degrees of freedom. The two mechanical 
systems however, behave quite differently. The open chain has a continuous spectrum 
while the periodic chain has quantum states and a discrete spectrum. 

In this paper, we are concerned with the determination of the spectrum of the 
periodic chain. This problem was considered by Gutmiller [5] who Separated the 
variables and derived recursion relations of the type: 

where A ( v )  is a polynomial whose coefficients are the unknown constants of the 
motion. Sklyanin [6, 71 greatly simplified the derivation of (1) using the R matrix 
formalism. Moreover, he suggested to interpret it as a Bethe ansatz equation defining 
an analytical function Q ( v ) .  

In this paper, we derive (1) using the methods of statistical mechanics [9]. A ( v )  
is the 'transfer matrix' and Q is an integral operator commuting with A .  The matrix 
elements of Q turn out to be the exponential of the generating function of the 
canonical Backlund transformation [l, 41. Diagonalizing simultaneously A and Q, we. 
recover (1) as an equation for their eigenvalues. The requirement that Q is entire 
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and goes to zero when v goes to infinity in the imaginary direction determines both 
Q and the polynomial A. It generalizes to higher degrees the case of degree one 
A = v where it is known that the unique solution of (1) vanishing in the imaginary 
direction is the Bessel function K,t [SI considered as a function of the index. 

The equations of motion of the periodic Tbda lattice derive from the Hamiltonian 
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where the index i is defined modulo N .  They take the form 

Their integrability results from the following Lax pair representation [4, 6) Define 
matrices Li and M i  by 

Li = ( -e-'?. ""9 0 

The system of equations (3) is equivalent to the auxiliary problem: 

L ;  = M i - , L i  - L i M i .  

Consider the monodromy matrix 

(4) 

T(U) = Ll(U) c,(U) ' ' '  LN(U). (6) 

From (2) 

= [ 'N~T(u) l  ' (7) 

Therefore, the trace of T(u) ,  A(u)  is independent of the time. It is a polynomial of 
degree N in U whose coefficients are the constants of motion 

P is the momentum, H the Hamiltonian. 
In quantum mechanics, the pi are replaced by the operators f& so that the 

matrix elements of Li  do not commute. Their commutation relation can be expressed 

t Our mnvention is t i . ( r )  = ( 1 / s i n  IIV) ( r , ( = )  - I-"(z)). 
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as follows [4, 61. Define the matrix L and L to be respectively L @ 1 and 1 @ L and 
the 4 x 4 R matrix 

1 2 

U - i i i  . 

-ih . U  
. 

U ...I 

R( U) = (9) 

Then 

Li commutes with L;  if i # j .  The commutation relations of the matrix elements of 
T(u) follow in a straightforward way from (10) and are given by the same expression 

1 2 2 1 
R ( ~ 1 - 7 ~ 2 )  T ( u ~ ) T ( u Z ) = T ( U ~ )  T ( u l ) R ( u I  - u p ) .  (11) 

It follows that the N -1 coefficients of the trace of T ,  A(u), are conserved quantities 
in involution. 

?b diagonalize A(u), we shall adapt the method used by Baxter in the eight-vertex 
model case [9]. We construct a family of integral operators Q( 7 1 )  which satisfy the 
matrix relation: 

A ( ~ ) Q ( ~ ) = I ~ Q ( u + i h ) + i - ~ Q ( ~ - i i t l )  ('2) 

and such that &(U), Q ( v ) ,  A ( v )  commute for all values of U and v .  
In (12), Q is a matrix with rows and columns indexed by the (continuous) variables 

( q l ,  ..., q N ) ,  ( q i ,  ..., qh). As a first step to finding the solution, we consider the 
equation for the columns of Q, y, ( q l ,  . . . , q N ) .  We take y in the form of a direct 
product 

w ., 
Y(rll...PN)= nvi(9i)  

i=1 

so that the product Ay takes the form: 

A(u)Y = t r  ( h v , ) .  . . ( L N v N ) .  (14) 

' h e  product Ay decomposes into two terms y'+ y" if each of the matrices L . v .  is 
lower triangular. Due to the cyclicity of the trace, A is not modifed if we substitute 
E ,  = NjLjN;:,  to L j  in (6). We take N ,  of the form 

3 . J  

and equate to zero the upper right coefficient of tjq,pj; this gives 

(U) 



5246 

which is solved by 
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and 

It follows directly from (18) that (12) is satisfied with y substituted for Q. Let us 
define the kernel: 

with 

By construction, Q satisfies equation (12) and it follows from a similar analysis that 
it also satisfies 

Q(u)A(u)  = i N Q ( u  + ih) + i-NQ(u- ih). (21) 

Note that the logarithms of the matrix elements of Q are the generating functions 
of the canonical transformation [I, 41. It may be useful to visualize Q as shown in 
figure 1. 

s; 

q*$ 

'\" 
q, 

\ s; Figure I. Msualhalion of matrix Q. 
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We can repeat the argument of Baxter 191 to show that operators Q ( u )  with 
different spectral parameters U commute. Let us introduce the permutation operator 
c: 

(cf) (419 9 2 , .  . . 9 4 N )  = f(42>93,. . . 191) (22) 

and the kernel Q 

Tne equaiity 

Q C u ) Q C u )  = Q(v)Q(.) 

is realized if there exists functions A , ( ¶ )  which satisfy the identity 

q'xr' q'xr' 

W" W" 
- /dq 

W" W" 
/dq 

I 2  
q2 A-. 

q, '2 

Figure 1. Diagrammatical representation of A.(q) 

A simple calculation gives 

A , ( q )  = (coshq/2)*. (26) 

Now, for U real, the operators Q ( u )  and & ( U )  are Hermitian conjugates and a m -  
mute with C. Therefore, there exists a unitary operator D independent of U which 
diagonalizes Q(u) simultaneously for all values of U .  Moreover, in the basis of mo- 
mentum eigenstates, the matrix elements of Q vanish like exp( -nNlu l /Z)  when U 

goes to infinity on the real line. Multiplying (12) by D to the right and to the 
left, we obtain an equation for the eigenvalue matrices Qd and A d .  The eigenvalue 
matrix Q d ( u )  is entire and vanishes when U tends to infinity in the real direction. 

We now consider (12) as a scalar equation and argue that A ( u )  is completely 
determined by the requirement that Q is an entire function going to zero Sufficiently 
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" 

Figure 3. The plynomial A(u). Shaded. the inlewals where lizl > 2. 

fast when +U goes to infinity. We first obtain this result in a WKB approximation, 
then we show how the quantization conditions obtained by Gutzwiller result from 
these requirements. 

Let us look for a solution of (12) in the form 

(27) 

and develop (28) to order 1 to obtain 

2coshSL = A ( u )  

SI - - zS{ 1 tanh SA 

which yields formally 

At this point, we must determine the branches of the phase S,(u). For  this, we 
make the assumption that the zeros of Q ( u )  accumulate on the intervals lA(u)l > 2 
on the real axis. The N - 1 intervals not containing fcc are called intervals of 
instability and coincide with the reeions where the 'classical motion' of U is confined 
[2, 31 (figure 3). We therefore take the system of cuts defined by lAl > 2, that is it 
to say [-co,u,], [ u 1 , u 2 ] ,  [u3 ,uq] ,  [u5,u6], [ u , , + M ] ,  on figure 3. We choose the 
determination of Sb so that Q is exponentially decreasing when 'U goes to plus or 
minus infinity. The resulting conformal mapping SA(%) is represented in figure 4. 
S; is a continuous function of U except across the cuts. For Q to  define a uniform 
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function of U ,  S(  U )  must be defined modulo 27rh in the complex plane minus the 
cuts. This gives the conditions: 

S'(u)du = 27rhnk 1 < k < N - 1 (33) L 
where the C, are contours of integration encircling the intervals of instability 1A1 > 2. 
On these intervals, Q is approximated by Q w K B ( u  + io) t Q W K B ( u  - io). The 
n - 1 integers nk count the number of zeros of Q on the kth interval of instability. 
RI first order in h, (33) gives the quantization conditions: 

Such conditions are precisely what one would expect from the correspondence prin- 
ciple applied to the solution of the Hamilton-Jacobi equation [3]: 

where the real variables uk are constrained to move on the N - 1 intervals of instabil- 
ity. The solution somnstructed vanishes as exl,((-Nn/Ztl)1211)sin((Nu/tl)logNu) 
when U goes to fco. 

Figure 4 Ihe mnformal mapping SA(") 

x. r. ne  now iook foi a ~olu ih i i  O: (12) which X ~ S  ~ X C  ~ a i i i ~  ~ q ~ p t ~ t i c ~  as the 
semiclassical approximation and obtain the quantization conditions in terms of a 
Hill determinant [5, 81. We consider the recursion relation satisfied by the auxiliary 
function 

N 

p ( u )  = sinh 7r (x t 6 k )  & ( U )  

k = 1  
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where 6, are unknown real numbers. It admits two independent entire solutions 
'p+ and 'p- which tend to zero when U goes to plus or minus io0 respectively, and 
which increase exponentially like e(N"lzn)lul in the real direction. We then ask for 
the function: 

to be regular. This determines the coefficients 6, and produces the quantization con- 
ditions. Due to the denominator, (37) has the correct behaviour exp -( Nn/2h)lul  
at infinity. 

Let us substitute (36) in (12) and set 

U = ihv 
N 

P ( v )  = (-i) A(ihv). 

We obtain the following recursion relations for 'p: 

Equation (37) has two independent solutions 'p+, 'p- distinguished by their asymp- 
totic behaviour. We set 

with 

where iu, are the roots of the polynomial P(v) = n;(v-iu,). Oi are the solutions 
of the following recursion relations: 

determined so that e,(+..) = O - [ - c o )  = 1. So. qt defines an entire function 
which vanishes when v goes to +cm and 9- an entire function which vanishes when 
v goes to -o0. They both increase as exp(4rrNlvl) for v very large in the imaginary 
direction. Tb obtain Q with the correct asymptotic behaviour, we look for a linear 
combination of 'p+ and 'p- divisible by nfzl sin n(v - i6,). This can be achieved 
if two conditions are satisfied. First, there must exist N real numbers SL such that 
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for v = i6k modulo an integer, the two solutions iot and 'p- are proportional, and 
second, the proportionality coefficient X = y+(i6k)/qp_(i6k)  must be independent 
of I C .  

The first condition is realized if the Wronskian 

vanishes for 2) equal to i6, modulo an integer, 
A direct calculation gives 

N 
W(v+,v-) = qv)n ?r- ' s ina(v- iu , )  

k=1 

where O(v)  i., the infinite tridiagonal determinant of Hill's [8]: 

0 
1' 

P ( U )  
- 

1 

1 
i 

P ( v )  
-- 

1 = 
P(u + 1 )  

1 - 
P ( v  + 1) 

0 

(44) 

(45) 

'RI evaluate the v dependence of 8, one observes that 8 is analytic except at the roots 
of P, i uk ,  where it has simple poles. It is periodic with period 1 and tends to 1 when 
2) tends to infinity in the imaginary direction. It follows that 

with Ck U ,  = Ck sk and CL E ,  = 0. Setting 8 to zero determines the 6, in terms 
of the N residues ek  of S ( v )  at v = iuk.  

The second condition yields the quantization conditions: 

Assuming that 6,, uk are real, ipt(i6,) and q-( i6&) are complex conjugates. There- 
fore (47) defines N phases that must be equal. These are precisely the quantization 
conditions obtained by Gutmiller from a different point Of view. 

To conclude, the eigenfunctions of the commuting set of operators Q(u)  are 
generalizations of the modified Bessel function I(Iy which occur in the lowest degree 
case, A(.) = iu. In that case, there is only one value of 6 equal to zero and no 
quantization condition (47). 
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